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ABSTRACT
Due to the rapid spread of rumors on social media, rumor detection
has become an extremely important challenge. Recently, numer-
ous rumor detection models which utilize textual information and
the propagation structure of events have been proposed. However,
these methods overlook the importance of semantic evolvement
information of event in propagation process, which is often chal-
lenging to be truly learned in supervised training paradigms and
traditional rumor detection methods. To address this issue, we pro-
pose a novel semantic evolvement enhanced GraphAutoencoder for
Rumor Detection (GARD) model in this paper. The model learns se-
mantic evolvement information of events by capturing local seman-
tic changes and global semantic evolvement information through
specific graph autoencoder and reconstruction strategies. By com-
bining semantic evolvement information and propagation structure
information, the model achieves a comprehensive understanding
of event propagation and perform accurate and robust detection,
while also detecting rumors earlier by capturing semantic evolve-
ment information in the early stages. Moreover, in order to enhance
the model’s ability to learn the distinct patterns of rumors and non-
rumors, we introduce a uniformity regularizer to further improve
the model’s performance. Experimental results on three public
benchmark datasets confirm the superiority of our GARD method
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over the state-of-the-art approaches in both overall performance
and early rumor detection.
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1 INTRODUCTION
The expansion of the Internet and social media has expedited the
dissemination of news, facilitating instantaneous discussions. Nev-
ertheless, this advancement also introduces specific risks, such as
the rapid circulation of rumors, which can undermine the credibil-
ity of online information, ultimately impacting individuals’ lives
and societal stability. [4, 55].

Therefore, there is an urgent need for a rapid and effective rumor
detection method. Recently, deep learning has played a crucial role
in rumor detection by automatically learning high-level represen-
tations of text and propagation structures of rumors [13]. Many
deep learning models, such as Recursive Neural Networks (RvNNs),
Recurrent Neural Networks (RNNs) and its successors, have been
applied to rumor detection due to their ability to learn sequential
features [2, 5, 17, 21, 22, 27, 41]. However, these methods overlook
the importance of complex topological structural information in
rumor propagation. In order to address this issue, some studies
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have invoke Graph Neural Networks (GNNs) to model the complex
topological structural information of rumor propagation [1, 26, 49].
Despite these models based on GNNs achieve success in rumor
detection by effectively exploiting the structure information of
propagation graphs, they often struggle to learn the intrinsic rela-
tionships between posts, because they only rely on supervised train-
ing objectives. This limitation results in poor generalization ability
and unsatisfactory performance in real-world scenarios [18, 48].
Thus, recent works such as [34] have proposed supervised graph
adversarial contrastive learning method to capture the invariance
of events, and [47] perform a contrastive learning training based
on relation-level augmentation and event-level augmentation, in
order to enhance the robustness and generalization of models.

However, the success of these rumor detection methods
that introduce contrastive learning heavily relies on com-
plex data augmentation techniques, which require continuous
trial and error to determine [40, 51]. Because unreasonable data
augmentation methods often introduce more noise, leading to ad-
verse effects on the model and causing a degradation in its perfor-
mance [44, 50]. Additionally, these models lack attention to
the semantic evolvement during news propagation. Semantic
evolvement refers to the gradual transformation of the compre-
hensive semantics of news (including source post and all replies)
as user interactions such as comments, shares, and likes increase.
These comments often present diverse viewpoints due to different
perspectives and positions, which contribute to the alteration of
the semantic meaning of the news. For example: (1) In the spread
of a rumor, there is often a situation where initially, the majority of
comments express agreement with the source post, but after some
time, a large number of debunking messages appear. Therefore, cap-
turing such a signal of significant semantic changes before and after
can effectively detect rumors. (2) In the spread of a rumor, a portion
of the comments may question and present evidence contradicting
the source post, leading to semantic evolvement repeatedly within
these contradictions. In contrast, in the spread of a non-rumor, the
comments usually focus more on in-depth analysis and discussion
of the information rather than refutation [33]. Capturing the overall
semantic evolvement information can help model identify semantic
transformations, thereby recognizing features of misinformation.
Furthermore, during the early stages of event propagation, rumors
often share significant similarities in their structure because there
is typically limited commenting and interaction [7], making it chal-
lenging to distinguish them solely based on structural features.
So capturing the semantic evolvement information during early
propagation stages can also help in identifying rumors early and
minimizing the harm caused by misinformation. Therefore, it is
crucial to consider and understand the semantic evolvement, and
strive to capture such information during news propagation [16].
However, in prior work, these supervised training paradigms and
contrastive learning based rumor detection methods struggled to
enable models to learn genuine semantic information [19, 32, 48].

In order to achieve more generalized, rapid, and effective ru-
mor detection without the need for complex data augmentation
techniques, we propose a novel semantic evolvement enhanced
Graph Autoencoder for Rumor Detection (GARD) model in this pa-
per. It introduces self-supervised semantic evolvement learn-
ing to acquire more generalized and robust representations

root post

(a) top-down direction

root post

(b) bottom-up direction

Figure 1: (a) the top-down semantic evolvement graph, as
comments increase, semantic begin to evolve, (b) the reverse
bottom-top semantic evolvement graph, where the edges be-
tween nodes indicate the direction of features reconstruction.

through feature reconstruction training based on propaga-
tion paths, while also detecting rumors earlier by capturing
semantic evolvement information in the early stages. Specifi-
cally, GARD learn the semantic evolvement information from both
local and global perspectives: (1) In order to capture the local se-
mantic changes between tweets and their responses, we utilize the
features of parent nodes to reconstruct the features of their child
nodes in the top-down directions as shown in fig. 1a, and utilize
the features of child nodes to reconstruct the feature of their parent
nodes in the bottom-up directions as shown in fig. 1b. (2) In order to
capture broader information propagation paths and contextual rela-
tionships, and determine whether significant semantic changes has
occurred during the propagation of news, we introduce a global se-
mantic learning module to learn the semantic relationships between
each node and its multi-hop neighboring nodes by conducting fea-
tures randommask reconstruction on undirected propagation graph.
It randomly masks a portion of the nodes’ features, then the masked
features are reconstructed by their multi-hop neighboring nodes.
(3) Furthermore, rumors and non-rumors usually exhibit distinct
propagation patterns, and the propagation patterns differ among
various event topics [7]. Therefore, in order to enhance the model’s
ability to learn the distinct patterns of rumors and non-rumors,
we introduce a uniformity regularizer [31, 43] to further improve
the model’s performance, which prefers the uniform distribution
on the unit hypersphere by pulling away the distance between
the representations of different events, so as to preserves maximal
information and eliminates the features collapse issue [54].

The experimental results on three benchmark datasets demon-
strate that our GARD outperforms state-of-the-art approaches in
both overall performance and early rumor detection. The main
contributions of our work are outlined as follows:

• We propose a GARD rumor detection method, which takes into
account not only the structural features but also the crucial se-
mantic evolvement features. This comprehensive consideration
enables the model to achieve better robustness and generalization
without the need for complex data augmentation techniques.

• In order to enhance the model’s ability to learn distinctive propa-
gation patterns of rumors and non-rumors, we introduce a unifor-
mity regularizer that further improve the model’s performance.

• Our GARD method has been evaluated on three widely used
benchmark datasets, and the experimental results demonstrate
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its superiority over the state-of-the-art approaches in both overall
performance and early rumor detection.

2 RELATEDWORK
2.1 Rumor Detection
In recent years, deep learning has emerged as a significant role in ru-
mor detection by automatically learning high-level representations
of text and rumor propagation structures. Various deep learning
models, including RNN and its various variants, have been applied
to rumor detection task [21, 22, 24, 28, 41]. To incorporate complex
structural information into rumor propagation analysis, several
approaches have incorporated GNNs to model the structural infor-
mation within rumor propagation. By considering a more realistic
representation of the problem, GNNs have demonstrated success in
leveraging the structural information of propagation graphs [1, 20].

To enhance the robustness and generalization of rumor detec-
tion models, some recent studies have proposed training methods
that introduce supervised graph contrastive learning techniques
to capture the invariance of events [34]. Some works also leverage
unsupervised contrastive learning training methods to capture the
repost relations and structural features of rumors [47].

2.2 Graph Autoencoders
With the development and widespread application of graph algo-
rithms [15, 38, 39, 42, 46, 52, 53, 57, 58], the application of graph au-
toencoders has also receivedwidespread attention. Autoencoders [8]
are designed to reconstruct certain inputs within a given context
and do not impose any specific decoding order. The earliest works
on Graph Autoencoders (GAEs) can be traced back to GAE and
VGAE [10, 35], where they utilize a two-layer GCN as the en-
coder and employ dot-product for link prediction decoding. Later
GAEs mostly adopted the structure reconstruction after VGAE
or combined structure and feature reconstruction as their objec-
tives [14, 29, 30, 36, 45]. In recent years, many studies have focused
on investigating the effectiveness of masked feature reconstruc-
tion objectives for GNNs [11, 25, 37, 48, 56]. Among them, Graph-
MAE [9] has achieved good results in graph representation learning
tasks based on masked feature reconstruction through the analy-
sis of masking strategies and the design of loss functions. It has
achieved state-of-the-art performance in multiple node classifica-
tion and graph classification tasks.

3 PROBLEM DEFINITION
The problem of rumor detection is defined as a classification task,
where the objective is to learn a classifier that can accurately detect
rumors. Specifically, for a given rumor dataset C = {𝐶1,𝐶2, ...,𝐶𝑀 },
where𝐶𝑖 is the 𝑖-th event and𝑀 is the number of events. We defined
each event 𝐶𝑖 = {𝑟,𝑤1,𝑤2, ...,𝑤𝑁𝑖−1, G𝑖 }, where 𝑁𝑖 is the number
of posts in 𝐶𝑖 , 𝑟 refers to the source post, each 𝑤 𝑗 represents the
𝑗-th responsive post, and G𝑖 defined as a graph represents the
propagation structure of 𝐶𝑖 . The graph G𝑖 = {𝑽 𝑖 ,𝑨𝑖 ,𝑿𝑖 }, where
𝑽 𝑖 refers to the set of nodes corresponding to 𝑁𝑖 posts and 𝑨𝑖 ∈
{0, 1}𝑁𝑖×𝑁𝑖 as an adjacency matrix where:

𝑎𝑖𝑠𝑡 =

{
1, if 𝑒𝑖𝑠𝑡 ∈ 𝐸𝑖
0, otherwise, (1)

where 𝐸𝑖 = {𝑒𝑖𝑠𝑡 |𝑠, 𝑡 ∈ {0, 1, ..., 𝑁𝑖 − 1}} represents the set of edges
connecting a post to its retweeted posts or responsive posts as
shown in fig. 1a. 𝑿𝑖 = [𝑥0, 𝑥1, ..., 𝑥𝑁𝑖−1]𝑇 denote a node feature
matrix extracted from the posts in𝐶𝑖 . We adopt the same approach
as [34] by using the BERT [6] to separately encode the source and
comments to form the feature matrix 𝑿𝑖 . Besides, each event 𝐶𝑖 in
the dataset is labeled with a ground-truth label 𝑦𝑖 . Here, we define
the problem statement as follows:

Rumor Detection: The task is to develop a classifier, denoted
as 𝑓 : 𝐶𝑖 −→ 𝑦𝑖 , where 𝐶𝑖 represents a event of rumor dataset with
their corresponding graph structure and textual features.

4 THE PROPOSED GARD MODEL
In this section, we propose a GARD model for rumor detection
tasks as fig. 2 shows. GARD is mainly faced with two problems: (A)
How to capture local semantic changes based on the propagation
paths of events; (B) How to capture global semantic evolvement
information based on the entire propagation structure of events.
In response to the above problems, we will elaborate on the com-
ponents of GARD, including local semantic evolvement learning,
global semantic evolvement learning, representation of propagation
graph, and uniformity regularizer.

4.1 Local Semantic Evolvement Learning
In order to capture the local semantic changes between tweets
and their retweets, we proposed this Local Semantic Evolvement
Learning module. We utilize the features of parent nodes to recon-
struct the features of their child nodes in the top-down direction,
and utilize the features of child nodes to reconstruct the features
of their parent nodes in the bottom-up direction. In detail, given
an input data G = (𝑽, 𝑨, 𝑿 ) where 𝑿 ∈ R𝑁×𝑑 , we obtain all 𝑁𝑝
parent-child node pairs, then obtain the parent feature matricx
𝑿𝑝 ∈ R𝑁𝑝×𝑑 for the parent nodes in all parent-child node pairs
and child feature matricx 𝑿𝑐 ∈ R𝑁𝑝×𝑑 for all child nodes in all
parent-child node pairs, respectively. Further, given 𝑓𝑙𝑜𝑐𝑎𝑙1 and
𝑓𝑙𝑜𝑐𝑎𝑙2 as two encoders, 𝑔𝑙𝑜𝑐𝑎𝑙1 and 𝑔𝑙𝑜𝑐𝑎𝑙2 as two decoders, here
we use Multi-Layer Perceptron (MLP) as both the encoder and de-
coder. Then we individually input the parent feature matrix and
child feature matrix into their respective encoder to obtain their
latent representations. Next, we feed these representations into
respective decoder to generate the reconstructed features. Formally,
in the top-down direction, it can be written as follows:

𝑯𝑝 = 𝑓𝑙𝑜𝑐𝑎𝑙1 (𝑿𝑝 ),𝒁𝑝 = 𝑔𝑙𝑜𝑐𝑎𝑙1 (𝑯𝑝 ), (2)

in the bottom-up direction, it can be written as:

𝑯𝑐 = 𝑓𝑙𝑜𝑐𝑎𝑙2 (𝑿𝑐 ),𝒁𝑐 = 𝑔𝑙𝑜𝑐𝑎𝑙2 (𝑯𝑐 ), (3)

where 𝑯𝑝 ,𝑯𝑐 ∈ R𝑁𝑝×𝑑ℎ are the latent representations of par-
ent nodes and child nodes, 𝒁𝑝 ,𝒁𝑐 ∈ R𝑁𝑝×𝑑 is the reconstructed
features. Then, we calculate the Mean Squared Error (MSE) loss
between the original features and the reconstructed features in
both top-down and bottom-up directions:

Lrec1 =
1
𝑁𝑝

1
𝑑

𝑁𝑝∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑥𝑐𝑖 𝑗 − 𝑧
𝑝

𝑖 𝑗
)2 + 1

𝑁𝑝

1
𝑑

𝑁𝑝∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑥𝑝
𝑖 𝑗
− 𝑧𝑐𝑖 𝑗 )

2, (4)
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Figure 2: The overall framework of our proposed GARD model. (1) The learning of local semantic changes is achieved by
reconstructing node features in both the top-down and bottom-up directions of parent-child node pairs. (2) The learning of
global semantic evolvement is achieved by conducting features random mask reconstruction on undirected propagation graph.
(3) We introduce a uniformity regularizer to enhance the model’s ability to learn the distinctive patterns of events.

where 𝑥𝑐
𝑖 𝑗
and 𝑧𝑐

𝑖 𝑗
refers to the j-th feature value of the i-th node

in feature matrix 𝑿𝑐 and 𝒁𝑐 . The parameters of 𝑓𝑙𝑜𝑐𝑎𝑙1 and 𝑓𝑙𝑜𝑐𝑎𝑙2
can be learned by:

𝚯
★
1 = argmin

Θ1
Lrec1 (G;𝚯1), (5)

where 𝚯1 denotes the parameters of 𝑓𝑙𝑜𝑐𝑎𝑙1 and 𝑓𝑙𝑜𝑐𝑎𝑙2.

4.2 Global Semantic Evolvement Learning
In order to capture broader information propagation path and con-
textual relationships, to determine whether significant semantic
changes has occurred during the propagation of news, we proposed
this Global Semantic Evolvement Learning module. In detail, given
an input data G = (𝑽, 𝑨, 𝑿 ) where 𝑿 ∈ R𝑁×𝑑 , we first apply a
uniform random sampling strategy with a mask ratio to sample a
subset of nodes �̃� ∈ 𝑽 and mask each of their features with a mask
token [MASK], i.e., a learnable vector 𝑥 [𝑀𝐴𝑆𝐾 ] ∈ R𝑑 . Thus, the
node feature 𝒙𝑖 for 𝑣𝑖 ∈ 𝑽 in the masked feature matrix 𝑿 can be
defined as:

�̃�𝑖 =

{
𝒙 [MASK] 𝑣𝑖 ∈ 𝑉

𝒙𝑖 𝑣𝑖 ∉ 𝑉 .
(6)

Further, given 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 as an encoder and 𝑔𝑔𝑙𝑜𝑏𝑎𝑙 as a decoder,
here we use Graph Convolutional Network (GCN) [12] as both the
encoder and decoder, in which, each node relies on its neighbor
nodes to enhance/recover features. Then we take the obtained
feature matrix ˜𝑿 and adjacency matrix 𝑨 as inputs to the encoder
to obtain latent representations. Next, these representations are
fed into the decoder to generate the reconstructed feature matrix.

Formally, it can be written as follow:

𝑯 = 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 (𝑨,𝑿 ),𝒁 = 𝑔𝑔𝑙𝑜𝑏𝑎𝑙 (𝑨,𝑯 ), (7)

where 𝑯 ∈ R𝑁×𝑑ℎ is the latent representations of input nodes,
𝒁 ∈ R𝑁×𝑑 is the reconstructed features. Then, we calculate theMSE
loss between the original features and the reconstructed features
of the masked nodes:

Lrec2 =
1
𝑁𝑚

1
𝑑

𝑁𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑥𝑖 𝑗 − 𝑧𝑖 𝑗 )2, (8)

where 𝑁𝑚 represents the number of masked nodes. Please note
that we only calculate the MSE loss on the masked node features.
The parameters of encoder 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 can be learned by:

𝚯
★
2 = argmin

Θ2
Lrec2 (G;𝚯2), (9)

where 𝚯2 denotes the parameters of 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 .

4.3 Representation of Propagation Graph
In order to leverage label information, we also calculate a supervised
loss function for optimizing the model. Specifically, given an input
data G = (𝑽, 𝑨, 𝑿 ) where 𝑿 ∈ R𝑁×𝑑 , we input the data into
encoder 𝑓𝑙𝑎𝑐𝑜𝑙1, 𝑓𝑙𝑜𝑐𝑎𝑙2 and 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 to obtain latent representations,
respectively. Then, we use mean-pooling operators (𝑀𝐸𝐴𝑁 ) to
aggregate the information of the set of node representations. Finally,
we concatenate them to merge the information. Formally, it can be
written as follow:

𝑯𝑘1 = 𝑓𝑙𝑜𝑐𝑎𝑙1 (𝑿 ),𝑯𝑘2 = 𝑓𝑙𝑜𝑐𝑎𝑙2 (𝑿 ),𝑯 𝑗 = 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 (𝑨,𝑿 ), (10)
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𝒉𝑘1 = 𝑀𝐸𝐴𝑁 (𝑯𝑘1),𝒉𝑘2 = 𝑀𝐸𝐴𝑁 (𝑯𝑘2),𝒉 𝑗 = 𝑀𝐸𝐴𝑁 (𝑯 𝑗 ), (11)

𝒎 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝒉𝑘1,𝒉𝑘2,𝒉 𝑗 ), (12)

where 𝒎 ∈ R3𝑑ℎ denotes the representation of event. Next, 𝒎 is
fed into full-connection layers and a softmax layer, and the output
is calculated as:

�̂� = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾𝑘𝒎 + 𝒃𝑘 ), (13)

where �̂� ∈ R𝐶 is a vector of probabilities for all the classes 𝐶 .
𝑾𝑘 ∈ R𝐶×3𝑑ℎ and 𝒃𝑘 ∈ R𝐶 are the learnable weight matrix and
bias respectively.

Therefore, we introduce a cross-entropy as supervised loss into
the objective of encoder 𝑓𝑙𝑜𝑐𝑎𝑙1, 𝑓𝑙𝑜𝑐𝑎𝑙2 and 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 . The objective
are updated as:

L = Lsup (G;𝚯1,𝚯2) + 𝛼 (Lrec1 (G;𝚯1) + Lrec2 (G;𝚯2)), (14)

where

Lsup = − 1
𝑁

𝑁∑︁
𝑘=1

𝐶∑︁
𝑗=1

𝒚𝑘,𝑗 𝑙𝑜𝑔(�̂�𝑘,𝑗 ), (15)

and 𝛼 is an adjustable hyperparameter used to control the weight
of the reconstructed loss. In Lsup, 𝒚𝑘,𝑗 denotes ground-truth label
that has been one-hot encoded. and �̂�𝑘,𝑗 denotes the predicted
probability distribution of event index 𝑘 ∈ {1, 2..., 𝑁 } belongs to
class 𝑗 ∈ {1, 2, ...𝐶}.

During the testing phase, we do not perform any special pro-
cessing on the input data. We simply input it into all encoders to
obtain their representations like eqs. (10) to (13) to generate the
classification predictions.

4.4 Uniformity Regularizer
In order to enhance the model’s ability to learn the distinct patterns
of rumors and non-rumors, we introduce a uniformity regularizer to
further improve the model’s performance. Uniformity loss prefers
the uniform distribution on the unit hypersphere by pulling away
the distance between the representations of different events, so
as to preserves maximal information and eliminates the feature
collapse issue [54]. The uniformity loss is defined as the logarithm
of the average pairwise Gaussian potential:

Luni = log E
(𝒎𝑖 ,𝒎 𝑗 )∼𝑝data

𝑒−𝑡 ∥𝒎𝑖−𝒎 𝑗 ∥2 , (16)

where 𝑝𝑑𝑎𝑡𝑎 is the distribution of data, 𝑡 is a hyperparameter for
Gaussian potential kernel and𝒎𝑘 denotes the graph representations
of event 𝑘 .

Then, we introduce a uniformity loss into the objective of en-
coder 𝑓𝑙𝑜𝑐𝑎𝑙1, 𝑓𝑙𝑜𝑐𝑎𝑙2 and 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 . The objective defined by eq. (14)
are finally updated as:

L = Lsup (G;𝚯1,𝚯2) + 𝛼1 (Lrec1 (G;𝚯1)
+ Lrec2 (G;𝚯2)) + 𝛼2Luni (G;𝚯1,𝚯2),

(17)

where 𝛼1 and 𝛼2 are adjustable hyperparameters used to control
the weight of the reconstructed loss and uniformity loss.

The parameters updating defined by eq. (5) and eq. (9) are up-
dated as:

𝚯
★
1 ,𝚯

★
2 = arg min

Θ1,Θ2
L(G;𝚯1,𝚯2), (18)

5 EXPERIMENTS
In this section, we first conduct experiments to evaluate the effec-
tiveness of the proposed GARD model by comparing it with other
baseline models for rumor detection, and give some discussion and
analysis. Secondly, we conducted ablation study to evaluate and
analyze the effectiveness of each module in GARD. Thirdly, we
perform a sensitivity analysis of the hyper-parameters in GARD,
discussing the impact of each hyper-parameter on the experimental
results. Finally, we evaluate the performance of GARD in the task
of early rumor detection.

5.1 Evaluation Setups
5.1.1 Datasets. We conducted an evaluation of the GARD model
using three publicly available real-world datasets: Twitter15 [23],
Twitter16 [23], and PHEME [59]. These datasets were collected from
Twitter, which is considered the most influential social media site in
the US. The PHEME dataset consists of two versions based on five
and nine breaking news events, and we selected the version with
nine events for our work. Both Twitter15 and Twitter16 datasets
have four tags: Non-rumor (N; Confirmed to be true), False Rumor
(F; Confirmed to be a rumor), True Rumor (T; Initially thought to
be a rumor but later confirmed to be true), and Unverified Rumor
(U; The truthfulness is yet to be determined). The PHEME dataset
only has two tags: Rumor (R) and Non-Rumor (N), used for binary
classification of rumors and non-rumors. For detailed statistics,
please refer to table 1.

5.1.2 Baselines. We compare GARD with state-of-the-art rumor
detection models, including:
• DTC [3]: A rumor detection method employs a Decision Tree
classifier to detect rumors by analyzing a set of handcrafted
features.

• SVM-TS [22]: A method utilizes a linear SVM classifier and hand-
crafted features to build a time-series model.

• BERT [6]: A popular pre-trained model that is used for rumor
detection.

• RvNN [24]: A rumor detection approach based on tree-structured
recursive neural networks with GRU units that learn rumor rep-
resentations via the propagation structure.

• GCAN [20]: A GNN-based model that can describe the rumor
propagation mode and use the dual co-attention mechanism to
capture the relationship between source text, user characteristics
and propagation path.

• BiGCN [1]: A GNN-based rumor detection model utilizing the
Bi-directional propagation structure.

• RECL [47]: A rumor detection model perform self-supervision
contrastive learning at both the relation level and event level to
enrich the self-supervision signals for rumor detection.

• GACL [34]: A GNN-based model using adversarial and con-
trastive learning, which can not only encode the global prop-
agation structure, but also resist noise and adversarial samples,
and captures the event invariant features by utilizing contrastive
learning.

• GARD (ours): A rumor detectionmodel introduces self-supervised
semantic evolvement learning to facilitate the acquisition of more
transferable and robust representations.
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Table 1: Statistics of the datasets

Statistics 𝑇𝑤𝑖𝑡𝑡𝑒𝑟15 𝑇𝑤𝑖𝑡𝑡𝑒𝑟16 𝑃𝐻𝐸𝑀𝐸

# source posts 1490 818 6425
# non-rumors 374 205 4023
# false rumors 370 205 2402

# unverified rumors 374 203 -
# true rumors 372 205 -

# users 276,663 173,487 48,843
# posts 331,612 204,820 197,852

5.1.3 Experimental Settings. We follow the evaluation protocol
in BIGCN[1]. We randomly split the dataset into five parts and
construct 5-fold cross-validation. The Accuracy (Acc.), Precision
(Prec.), Recall (Rec.) and 𝐹1-measure (𝐹1) are adopted as evaluation
metrics in all three datasets. Same as GACL [34], graph topologies
of posts are constructed based on users, sources and comments
in the all three datasets, where the text content contained in each
graph node is represented by BERT. Furthermore, the learning rate
is set to 5𝑒 − 4 and the mask ratio in global semantic evolvement
learning module is set to 0.25. We adopt 2-layer MLP as backbone
of two encoders 𝑓𝑙𝑜𝑐𝑎𝑙 and tow decoders 𝑔𝑙𝑜𝑐𝑎𝑙 , while adopt 2-layer
GCN as encoder 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 and 1-layer GCN as decoder 𝑔𝑔𝑙𝑜𝑏𝑎𝑙 . We set
𝛼1 = 0.05, 𝛼2 = 0.5 for Twitter15 and Twitter16, and 𝛼1 = 0.1, 𝛼2 = 1
for PHEME.

5.2 Overall Performance
table 2 and table 3 show the performance of the proposed GARD
and all the compared methods on three public real-world datasets,
where the bold part represents the best performance. The exper-
imental results demonstrate that the proposed GARD performs
exceptionally well among all baseline models, confirming the ad-
vantages of incorporating Graph Autoencoder to learn the semantic
evolvement information of news propagation.

Not surprisingly, the machine learning-based models, DTC and
SVM-TS, obtained the worst results. On the other hand, the deep
learning-based models, RvNN and BERT, achieved moderate per-
formance in the tests. Both GCAN and BiGCN are models based on
GNN. They relied on a powerful GNN encoder to capture global
structural features of the rumor tree. RECL and GACL are both
models based on GNN and contrastive learning, which improve the
model’s robustness through specific data augmentation strategies
and contrastive learning methods. They serve as state-of-the-art
benchmarks to validate the advantages of the proposed GARD
model in this paper.

The GARDmodel proposed in this paper achieved the best perfor-
mance on all benchmarks, because with the progress of information
propagation, particularly in the case of larger data volumes and
higher data quality, there is a greater possibility of significant se-
mantic changes in news’ propagation. Therefore, learning semantic
evolvement information becomes more important. Paying attention
to it helps improve the performance of rumor detection tasks, and
so our GARD model achieved the best performance without the
need for complex data augmentation strategies.

Table 2: Rumor detection results on Twitter15 and Twitter16
datasets (N: Non-Rumor; F: False Rumor; T: True Rumor; U:
Unverified Rumor)

𝑇𝑤𝑖𝑡𝑡𝑒𝑟15

Model Acc. N F T U

𝐹1 𝐹1 𝐹1 𝐹1

DTC 0.454 0.415 0.355 0.733 0.317
SVM-TS 0.642 0.811 0.434 0.639 0.600
RvNN 0.723 0.682 0.758 0.821 0.654
BERT 0.735 0.731 0.722 0.730 0.705
GCAN 0.842 0.844 0.846 0.889 0.800
BIGCN 0.886 0.891 0.860 0.930 0.864
RECL 0.902 0.856 0.910 0.947 0.894
GACL 0.901 0.958 0.851 0.903 0.876
GARD 0.911 0.889 0.923 0.905 0.901

𝑇𝑤𝑖𝑡𝑡𝑒𝑟16

Model Acc. N F T U

𝐹1 𝐹1 𝐹1 𝐹1

DTC 0.473 0.254 0.080 0.190 0.482
SVM-TS 0.691 0.763 0.483 0.722 0.690
RvNN 0.737 0.662 0.743 0.835 0.708
BERT 0.804 0.777 0.525 0.824 0.787
GCAN 0.871 0.857 0.688 0.929 0.901
BIGCN 0.880 0.847 0.869 0.937 0.865
RECL 0.921 0.875 0.933 0.949 0.901
GACL 0.920 0.934 0.869 0.959 0.907
GARD 0.932 0.936 0.935 0.950 0.908

Additionally, we found that the accuracy on the PHEME dataset
is relatively lower compared to Twitter. This is because the PHEME
dataset consists of data from only 9 event topics, leading to a signifi-
cant overlap in the language descriptions and propagation structure.
And our GARD achieve more improvement on the PHEME dataset
than Twitter dataset because our model takes into account not only
the structural information but also the crucial semantic evolvement
information which exhibits greater distinctiveness on the PHEME
dataset.

5.3 Ablation Study
To evaluate the efficacy of the various modules of GARD, we con-
duct a comparative analysis by comparing it with the following
variants:

• GARD-SUP : This model removes the two semantic evolvement
learning modules and the uniformity regularizer, and solely con-
ducts supervised training by inputting a complete propagation
graph into two encoders.

• GARD-NGS: This model removes the global semantic learning
module, which makes the model lose the ability of capturing
broader significant semantic evolvement information.

• GARD-NLS: This model removes the local semantic learning
module, which makes the model lose the ability of capturing the



Semantic Evolvement Enhanced Graph Autoencoder
for Rumor Detection WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 3: Rumor detection results on PHEME dataset

𝑃𝐻𝐸𝑀𝐸

Method Class Acc. Prec. Rec. 𝐹1

DTC R 0.254 0.080 0.190 0.482
N 0.483 0.722 0.690

SVM-TS R 0.685 0.553 0.539 0.539
N 0.758 0.762 0.757

RvNN R 0.763 0.689 0.587 0.631
N 0.796 0.858 0.825

BERT R 0.807 0.736 0.695 0.713
N 0.842 0.866 0.853

GCAN R 0.834 0.769 0.758 0.761
N 0.871 0.874 0.872

BIGCN R 0.824 0.753 0.734 0.741
N 0.861 0.872 0.865

RECL R 0.852 0.800 0.753 0.778
N 0.868 0.910 0.888

GACL R 0.850 0.801 0.750 0.772
N 0.871 0.901 0.885

GARD R 0.869 0.817 0.764 0.790
N 0.886 0.928 0.886

local semantic changes between tweets and their responses in
both the top-down and bottom-up propagation directions.

• GARD-NU : Thismodel removes the uniformity regularizer, which
makes the model lose the ability of eliminating the features col-
lapse issue, allowing the model to learn more uniform represen-
tations.
The results are summarized in table 4. We have the following

observations from this table:
1) By comparing GARD and GARD-SUP (also can compare GARD-

NU andGARD-SUP), we can observe that the accuracy of GARD-
SUP on the Twitter15, Twitter16 and PHEME datasets is reduced
by 4.9%, 5.7% and 4.7%, respectively. Obviously, the introduction
of self-supervised semantic evolvement learning in our GARD
leads to significant performance improvement compared to
solely using a supervised learning objective to train the model.

2) Removing either the local semantic evolvement learning mod-
ule or the global semantic evolvement learning module results
in a decrease in the model’s performance, but both perform
better than GARD-SUP, which includes no semantic learning
module. The best performance is achieved when both modules
are present together, which demonstrates that both local and
global semantic evolvement learning modules are beneficial
and the combination of local semantic evolvement information
and global semantic evolvement information provides a greater
improvement.

3) By comparing GARD and GARD-NU, we can observe that the
uniformity regularizer improves the performance of the model
to a certain extent. In particular, it increased by 0.8% on the
PHEME dataset. This is because the PHEME dataset has only 9
event topics, which results in a more similar event propagation

Table 4: Results of ablation study on three datasets

Model Acc.

𝑇𝑤𝑖𝑡𝑡𝑒𝑟15 𝑇𝑤𝑖𝑡𝑡𝑒𝑟16 𝑃𝐻𝐸𝑀𝐸

GARD 0.911 0.932 0.869
GARD-SUP 0.862 0.875 0.822
GARD-NGS 0.894 0.913 0.843
GARD-NLS 0.895 0.901 0.850
GARD-NU 0.905 0.926 0.861
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Figure 3: Sensitivity analysis of hyperparameters 𝛼1 and 𝛼2,
which represent the weight of reconstructed loss and unifor-
mity loss.

structure and language description compared to Twitter. The
uniformity enhances the model’s ability to learn distinguishing
features, leading to a more significant improvement.

5.4 Sensitivity Analysis
We conduct sensitivity analysis with hyper-parameters on the key
designs of GARD. fig. 3 shows the effect of varied hyper-parameter
values, from which we have the following observations.

5.4.1 Effect of weight of reconstruction loss 𝛼1. This weight
affects the result of rumor detection by affecting the weight of recon-
struction loss in the total loss. As shown in the left picture of fig. 3,
we conducted sensitivity analysis by selecting eight data points
between 0 and 1. It can be observed that as the hyper-parameter
𝛼1 gradually increases, the model’s performance on three datasets
starts to improve due to graph autoencoder self-supervised learn-
ing allows the model to learn semantic evolvement information,
thereby improving the model’s performance. For Twitter15 and
Twitter16 datasets, the best performance is achieved when 𝛼1 is
set to 5𝑒 − 2, while for the PHEME dataset, 𝛼1 of 1𝑒 − 1 yields the
best performance. It is worth noting that when 𝛼1 exceeds a certain
threshold, the model’s performance starts to decline noticeably.
This is because of overfitting of the model to the self-supervised
features reconstruction task during training.

5.4.2 Effect of weight of uniformity loss 𝛼2. This weight af-
fects the result of rumor detection by affecting the weight of uni-
formity loss in the total loss. As shown in the right picture of fig. 3,
we conducted sensitivity analysis by selecting eight data points
between 0 and 10. We can observe that initially, as 𝛼2 increases,
the model’s performance on Twitter shows slow improvement.
However, on the PHEME dataset, there is a more significant im-
provement in model performance as 𝛼2 increases. This is due to the
fact that, as mentioned earlier, the PHEME dataset has a smaller



WWW ’24, May 13–17, 2024, Singapore, Singapore Xiang Tao, Liang Wang, Qiang Liu, Shu Wu, & Liang Wang

Figure 4: Results of rumor early detection task on three datasets

number of event topics, making the value of 𝛼2 have a larger impact
on performance. Similarly, when 𝛼2 exceeds a certain threshold,
the model’s performance starts to decline noticeably. This is be-
cause excessively pursuing the learning of feature differences can
actually harm the quality of the learned representations, leading to
a decrease in classification accuracy.

5.5 Early Rumor Detection
Early rumor detection is also an important way for evaluating mod-
els. Its purpose is to detect rumors during the early stages of their
spread, thereby preventing potentially greater harm. In our experi-
ments in this paper, similar to the [34], we set up 8 different time
points (i.e., 10, 20, . . . , 120 minutes) to evaluate whether the model
can correctly identify rumors based on the limited information
available from earlier time points up to these specific moments.

fig. 4 shows the performances of our GARD and baseline mod-
els at various deadlines for the Twitter15, Twitter16 and PHEME
datasets in the early rumor detection task. We can observe that
at time 0, all the models perform poorly. But at 10 minutes, our
GARD model shows a more significant improvement compared
to other models, and it maintains a high and stable accuracy rate
throughout the subsequent time periods. This is because in the
early stages of event propagation, there is less commenting and
interaction, resulting in similar propagation structures for events.
Therefore, relying solely on structural information to detect rumors
has significant limitations. Our GARDmodel, on the other hand, not
only considers structural information but also takes into account
the semantic evolvement information. This comprehensive under-
standing allows the model to effectively detect rumors in the early
stages. The performances demonstrates that semantic evolvement
information are not only beneficial to long-term rumor detection,
but also helpful to the early detection of rumors.

6 CONCLUSION
In this paper, we propose a novel rumor detection model GARD,
which detects rumors by effectively introducing self-supervised
semantic evolvement learning to facilitate the acquisition of more
transferable and robust representations through feature reconstruc-
tion training based on propagation paths, while also detecting ru-
mors earlier by capturing semantic evolvement information in the
early stages. Our model learn local semantic changes based on

propagation paths effectively by using the parent nodes to recon-
structthe features of their child nodes in the top-down direction
and utilizing child nodes to reconstruct the features of their parent
nodesin the bottom-up direction. And it capture global semantic
evolvement information based on propagation structure by con-
ducting arandom masked features reconstruction on undirected
graph. Additionally, we have introduced a uniformity regularizer
to furtherenhance the model’s performance. By comprehensively
capturing the semantic evolvement information and structure infor-
mation of events, our proposed GARD method consistently outper-
forms existing state-of-the-art methods in both overall performance
and early rumor detection.
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